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1. Introduction 

The investigation of a model of combustion led to a novel estimation procedure.  The a priori 
knowledge was the equation:  “impulse is equal to average force multiplied by time duration,” 
or tfI = .  The data provided was the mean and standard deviation of the impulse and time.  The 
information requested was the mean and standard deviation of a factor representing average 
force.  The procedure is based on the formula for the variance of a product of random variables.  
Starting with a simplified model, terms are added until a feasible solution exists.  Some of the 
terms required by the model are not available, and a simulation-based expectation fitting 
algorithm is used to estimate these unknown values.  Through simulation and an assumption 
about the type of distribution, it is possible to investigate questions that do not have a closed 
form solution. 

 

2. Problem Statement 

Combustion data was available on several fabrications of explosive jets.  Averages and standard 
deviations were available for the impulse of an explosive jet and its duration.  From this data, it 
was requested that the standard deviation and mean of the average force be determined.  The 
impulse is the product of the duration and the average force.  This seemingly simple request does 
not have a precise answer.  It will be shown that there are several plausible explanations. 

 

3. Data Description 

The original data was the mean and standard deviation of the jet strength and its duration.  Only 
the means and variances were available; information on the individual trials was not given.  The 
data from combustor 8 has an impulse average of 3.7 mN-s, with a standard deviation of 1.2 and 
an average duration of 1.4 ms, with a standard deviation of 0.9.  Data is available on the product 
and one of the factors.  The information requested is the mean and standard deviation of the other 
factor.  The provided data is treated as if it were the population mean and population standard 
deviation for the impulse and duration random variables.  The number of samples was unknown, 
so no attempt was made to investigate the effects of variations in these values. 
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4. Product of Random Variables 

First consider the possibility that the impulse is the result of a constant term multiplied by the 
duration.  If this were true, then the variance of the impulse would be the square of the constant 
multiplied by the variance of the duration.  Using the variance to find the constant yields a value 
of 4/3; if this were the case, the mean value of the impulse would be 1.8667.  The observed mean 
impulse is 3.7, which discounts the plausibility of this functional form.  Although it is possible 
that the impulse can be modeled as some function of duration, there is not a good physical reason 
to do so.  Duration can be considered a random variable as it is partially determined by reaction 
rate and the initiation of the reaction.  The force can be considered a random variable because it 
is determined by the amount of combustible material and the jet formation process.  These 
variables contain common elements; correlation is anticipated. 

The product of two random variables has been discussed by Bohrnstedt and Goldberger.1  Their 
paper gives the following two equations for the expectation and variance of the product of two 
random variables: 

 ( ) ( ) ( ) ( , )= +E xy E x E y C x y , (1) 

and 

 

 
2 2 2

2 2 2 2

( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( , ) ( , )
( ) 2 ( ) ( ) 2 ( ) ( ) ,

= + + −

+ + +

Var xy E x Var y E y Var x E x E y C x y C x y
E dx dy E x E dxdy E y E dx dy

 (2) 

where C(x, y) symbolizes the covariance between x and y and dx is the difference between x and 
the mean of x.  The first two terms of the variance expression are positive.  The covariance can 
be positive or negative.  The last two terms will be zero if the marginal distributions are 
symmetric; these terms can be negative for asymmetric random variables.  A simplified formula 
results from assuming uncorrelated random variables.  In this case, the covariance terms are zero 
and the variance expression becomes 

 )()()()()()()( 22 yVarxVarxVaryEyVarxExyVar ++= . (3) 

Each term in this equation is positive.  If the means are large compared to the variance, then it 
may be possible to ignore the term that is the product of two variances. 

                                                 
1Bohrnstedt, G. W.; Goldberger A. S.  On the Exact Covariance of Products of Random Variables.  Journal of the American 

Statistical Association 1969, 64. 
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5. Benign Case 

The impulse data has a mean of 3.7 and a variance of 1.44, and the duration has a mean of 1.4 
and a variance of 0.81.  In the previous equation, xyI =  and the duration is represented by y.  
Thus, x represents the random variable for the average force .f   Using the assumption of no 
correlation and normal variables gives the following equations:   

 3.7 1.4= f , (4) 

and 

 
2 21.44 0.81 1.4 ( ) 0.81 ( )= + +f Var f Var f . (5) 

The average force is 2.64.  Substituted into the variance equation, this value leads to negative 
variance.  This contradiction demands that the assumptions be changed.  

The correlation terms will be added to the previous model.  For a given quantity of combustible 
material, the average force and time duration should have a correlation of –1.  This correlation 
value is a boundary in the sense that the correlation cannot be made more extreme. 

The assumption of zero correlation will be replaced with an assumption that there is correlation.  
The following equations result from the addition of correlation: 

 ( ) ( ) ( ) ( , )= +E xy E x E y C x y , (6) 

and 

 
2 2 2

2

( ) = ( ) ( ) + ( ) ( ) + 2 ( ) ( ) ( , ) ( )
+ ).2

Var xy E x Var y E y Var x E x E y C x y – C x, y
E(dx dy

 (7) 

First note that the presence of correlation changes the expected value of the product.  If the 
correlation is positive, then the covariance term will cause the expectation of the product to 
increase since errors in each random variable will tend to have the same sign.  Negative 
correlation will diminish the expectation of the product.  The final term for bivariate normally 
distributed variables has been shown by Anderson2 as follows:  

 ),(2)()()( 22 yxCyVarxVardydxE += . (8) 

Incorporating this result in equation 8 results in the following impulse variance equation: 

 
2 2 2( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( , ) ( , )

( ) ( ) 2 ( , ).
= + + −
+ +

Var xy E x Var y E y Var x E x E y C x y C x y
Var x Var y Cov x y

 (9) 

                                                 
2Anderson T. W.  An Introduction to Multivariate Statistics; John Wiley and Sons:  New York, NY, 1958. 
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Notice the assumption that the force and duration are bivariate normal variables has been added.  
Using this result and substituting in numbers yields the following equations for a correlation of  
–1; in this case, some of the terms cancel.  (Note that yxyxC σσ−=),( .) 

 3.7 1.4 ( , ) 1.4 ( 1)(0.9)= + = + −f C x y f fσ . (10) 

 
2 2 2 2 21.44 0.81 1.4 2 1.4(0.9) .81 .81 2(0.9)= + − − + −f f ff f f fσ σσ σ σ . (11) 

By solving equation 10 for the average force and substituting this value into equation 11, the 
quadratic formula can be used to find the standard deviation of the force.  These two steps can be 
used as an iteration to approximate a solution.  For the numeric values in equations 10 and 11, 
the process converges to an average force of 3.3261, with a standard deviation of 1.0628.  A 
plausible solution has been achieved; a range of plausible solutions should be considered.  This 
process was repeated for different amounts of correlation ( ρ ). The results are presented in 
table 1. 

Table 1.  Correlation results. 

Correlation ρ  Average Force f  Standard Deviation fσ  
–1 3.1687 0.8181 

–0.9 2.3519 0.5029 
–0.8 2.3448 0.5794 
–0.7 2.3329 0.6888 
–0.6 2.3088 0.8662 
–0.5 Imaginary Imaginary 

 
The range of plausible solutions stops between a correlation of –0.6 and –0.5.  It can be seen in 
table 1 that the lowest standard deviation is around a –0.9 correlation.  More calculations could 
be done to find the correlation associated with the lowest standard deviation, and a minimum 
variance estimate could be proposed.  The question remains as to what can be done if there are 
reasons to believe the distribution is not symmetric.  Adding asymmetric terms requires 
information which is not available; this information will be generated through simulation. 

 

6. Terms That Capture Nonsymmetrical Distribution 

At this point, it has been determined that the final two terms of the original variance expression 
be included.  These terms will be zero when the distribution is symmetric.  To capture these 
terms, there is insufficient data; thus, assumptions are necessary.  First, a distribution will be 
chosen for the random variable duration; then, a distribution will be chosen for the force.  If 
these distributions are acceptable, the impulse mean and variance should result from the product 
of a simulation of the random variable’s duration and force.  The time duration data can be 
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modeled with a gamma, or Weibull distribution.  (Note that an exponential distribution can be 
ruled out since the variance should be the square of the mean.)  The duration mean of 1.4 and 
variance of 0.81 make an exponential distribution seem unlikely.  Each variable was assumed to 
result from a gamma distribution, and sets of simulated data were used to generate the values 
needed to find the variance of the product.  This process was repeated, as described next, until 
the simulated data resulted in values matching the known means and variances. 

The gamma distribution is not symmetric distribution.  Two parameters are used to describe this 
distribution—the shape parameter is α  and the scale parameter isβ .  The gamma is often used 
to simulate the time taken to complete a task.  For a gamma distribution, the product of the 
parameters is the population mean, αβμ = ; the variance is equal to the product of the mean and 
beta, or 22 αβσ = .  Assuming that the gamma distribution is the proper distribution, the duration 
yields =α 2.42 and =β 0.58 as estimates of the parameters.  These parameters were used to 
generate a set of gamma random variables.  At this point, it was not possible to generate gamma 
variables with a correlation of –1.  Instead, variables were generated that corresponded with each 
other in probability.  Thus, if the cumulative distribution function of one distribution was p(x), 
the corresponding value from the other distribution was 1 – p(x).  This allowed the generation of 
related pairs of data; further, this relation could be weakened.  Using the cumulative distribution 
function, the probability associated with each value was found.  This value was subtracted from 
1 to get the probability of a uniform random variable with a correspondence of –1.  Using these 
values, the parameters of the force distribution were approximated as if it were a similar gamma 
distribution.  In this case, similar means that the ratio of the parameters is the same for each 
distribution.  This requirement results in =α 3.85 and =β 0.91 for the force distribution.  Next, 
using the time duration distribution and the force distribution, the mean and variance of the 
product were calculated and compared to the obtained impulse mean and variance.  With these 
values, the mean of the impulse was matched; however, the variance was too low.  A method 
was devised to decrease the probability correspondence.  As the correspondence moved from –1 
towards 0, the variance increased.  At a correspondence of –0.78, the simulated mean and 
variance agreed with the observed mean and variance for the impulse data.  The following 
formula was used to vary the probability correspondence: 

 icp=w*igdp+(1-w)*rand(size(igdp)) , (12) 

where w is the weight to adjust probability correspondence and igdp is the vector containing the 
cumulative gamma values with a probability correspondence of –1.   

The argument presented shows only that duration and force distribution could have correlated 
gamma distributions.  While specific cases have been ruled out, there can be no claim of a 
unique solution; only plausibility has been established.  The force could be distributed as a 
gamma distribution with parameters α = 3.85 and β = 0.91 and a probability correspondence of  
–0.78 with the duration data.  The correlation coefficient of the simulated variables was –0.86.  
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Thus, the concept of a probability correspondence is different than correlation.  Note that the 
minimum variance estimator for the previously discussed symmetric case had a correlation of 
about –0.9. 

 

7. Discussion of Implications of Principles of Explosive Behavior 

In many situations, an investigation of the physical laws describing the phenomenon will provide 
insight into the nature of the random variables.  In some situations, it is worthwhile to perform a 
sensitivity analysis of the pertinent variables to gain insight.  The following material is taken 
from AMCP 706-180.3  Chapter 10 of this engineering design handbook discusses thermal 
explosion.  Thermal explosion occurs when explosive systems undergo internal heating.  This 
internal heating can be initiated by external sources; when the chemical reaction releases enough 
heat, this reaction turns into an explosion.  The reaction rate of an explosive varies exponentially 
with temperature.  Expressed as the Arrhenius Law of reaction rate, the relationship is as 
follows:  

 RT
E

r Zek
−

= , (13) 

where Z is the preexponential factor, E is the activation energy for the reaction, R is the gas 
constant, and T is absolute temperature.  The decomposition of the explosive is exothermic; 
opposing this is heat loss to the surrounding environment.  If the heat generation from the 
chemical reaction dominates, an explosion will occur.  If environmental cooling dominates, the 
material will react relatively slowly until it is used up.  The heat gain equation from the chemical 
reaction is as follows: 

 QTmkq r 11 = , (14) 

where 1T  is the temperature of the reactant and Q is the heat of decomposition.  Note the reaction 
rate term is also a function of temperature. Environmental cooling is represented by the 
following equation: 

 )( 102 TThAq −= , (15) 

where 0T  represents the temperature of the surroundings, A is the surface area exposed to the 
surroundings, and h is the heat transfer constant. The temperature of the explosive is then 
expressed by the following equation:

                                                 
3AMCP 706-180.  Principles of Explosive Behavior 1972. 
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mc

qq
dt

dT )( 211 +
= , (16) 

where c represents the specific heat.  As time increases, the material decomposes and releases 
heat.  If this heat is conducted away fast enough, the explosion may be delayed and the amount 
of explosive material will be reduced.  Data from a different combustor was available.  
Observing this data indicates that in the material used to form the jets, the cooling rate and 
heating rate are almost in balance.  This perspective could explain some of the variation in the 
data from a phenomenological perspective.  

For some of the data, the preignition time was rather long.  This could be caused by 
environmental cooling slowing down the reaction rate.  In other situations, the energy released in 
the impulse appears to be a low outlier.  This could be explained by only a portion of the 
energetic material reacting.  If only the material on one side of the heating coil ignites or if some 
material detaches and blows out of the camber before ignition, the impulse strength would be 
reduced.  It is also possible that the orifice could become partially clogged with material during 
the event.  

8. Discussion 

For control purposes, the start time, strength, and duration of a jet need to be known precisely.  
In a spinning round, timing errors cause the force to be applied at suboptimal angles.  Procedures 
reducing the timing errors of the time delay until ignition and the pulse duration should be 
investigated.  While impulse strength does the work, it is only valuable if applied properly.  

The variables duration and average force cannot be considered separately because they are 
highly correlated.  The gamma distribution was used to model both of these variables; however, 
this distribution was chosen only because it was not symmetric and its parameters were easy to 
estimate from the mean and variance.  Weibull and Pearson distributions are also plausible 
choices.  The constraint that both distributions need to be the same could be relaxed.  

The calculation of average force is complicated since average force and duration are random 
variables.  Working with an assumed distribution for duration, the parameters of the candidate 
distribution were adjusted until the mean and variance of the products matched the impulse 
statistics.  Thus, there is only a procedure and not a formula that allows the mean and variance of 
average force to be found.  The simulation step overcomes the data limitation imposed by having 
access only to the mean and variance of the data.  The distributions chosen by the investigator 
represent the constraint that allows the problem to be solved.  Thus, the investigator should 
provide a justification for the distribution selected.  The procedure discussed is general and does 
not rely on the properties of a specific distribution.  A plausible solution is possible through this 
simulation-based expectation fitting algorithm. 
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